TechTip: Members Only? No Problem
with DB2 Web Query

Use DB2 Web Query to access your multiple member files, let your users
dynamically select the member they want to query at run time, and
create a report that uses the latest and greatest database engine

technology
Published Friday, 12 March 2010 01:00 by MC Press On-line [Reprinted with permission from
iTechnology Manager, published by MC Press, LP; http://www.mcpressonline.com.]

Written by Gene Cobb — cobbg@us.ibm.com

Over the last several years, | have written several articles about DB2 for i and DB2 Web Query: some of
which emphasized the importance of employing techniques to ensure that your queries are using the
SQL Query Engine (SQE), the strategic database engine for DB2 for i. One of the requirements for SQE
processing is that the database access method must be SQL. However, one of the very few drawbacks
with SQL access on our beloved system is that it does not natively support the concept of physical file
members. This means you cannot write an SQL select statement that directly references a specific
member. When the file is queried, SQL can only access the first member in the file. This in turn means
that the DB2 Web Query CLI adapter (the one that generates SQL to satisfy the query request) can not
directly access a member either. If you have DB2 Web Query this can be frustrating because you may
have hundreds or even thousands of files that have valuable data tucked away in individual members.

Fortunately, all is not lost. DB2 Web Query does provide another adapter that lets you access specific
members: the DB Heritage File. You can use this adapter to configure a DB2 Web Query synonym that
references a specific physical file member. Any report that is based on such a synonym will generate a
database request using the OPNQRYF command (which does support the direct access of a physical file
member). Problem solved right?

Well yes and no. Yes, because this will work. You can create snazzy reports, graphs, and dashboards
using DB Heritage File synonyms to effectively reach the data in members. But remember what | said
about SQE? It will only be used to process a query if that query is based on an SQL statement. OPNQRYF
is not SQL, thus the older Classic Query Engine (CQE) must be used to perform the query workload.
While CQE is no slouch when it comes to handling database requests, in most cases, this means a slower
running query. It also means you can’t take advantage of all the “goodies” that SQE provides such as the
SQE plan cache, Maintained Temporary Indexes, and Materialized Query Tables. | could go on and on
about the benefits of SQE — but just know this: IBM has not enhanced CQE in a long time and will not be
in the future because SQE is the strategic engine.

OK, cheer up — | didn’t write this article to put you in a surly mood. Even though SQL does not support
the direct access of a specific member, there is a way to “trick” it into doing just that. Ever heard of an
SQL Alias? An alias is an alternate name for a table or view. If you were to look up the CREATE ALIAS
statement in the SQL reference manual, you would find this:

The CREATE ALIAS statement defines an alias on a table, partition of a table, view, or member of a
database file at the current server.

Wait -did you see that word? Member? Yes, you actually can create an SQL alias that points to a specific
physical file member. You can then reference the alias in an SQL Select statement to gain access to the
data in the specific member. To give you an example, let’s say you have a multi-member physical file
named ORDERS that resides in the QGPL library. ORDERS has several members — one for each year
between 2001 and the current year. To create an alias that points to a specific member you would
execute an SQL statement like the following:

CREATE ALIAS QGPL/ORDERS_MBR FOR QGPL/ORDERS (ORDERS2005);

In this example, you created an SQL Alias named ORDERS_MBR that is based on the specific member
named ORDERS2005. This means any SQL statement that references that alias (like the one below) will
only query the data in the ORDERS2005 member.

SELECT * FROM QGPL/ORDERS_MBR

Since SQL is used for data access, SQE can be used to handle the request.

In DB2 Web Query you can also use the CLI adapter to create a synonym based on an SQL Alias. This
means you can create a DB2 Web Query report that is based on a specific member AND uses SQE!
Woohoo!

But wait, we’re not done yet. A question that | am often asked is how a DB2 Web Query report
developer can provide an interface that allows the end user to select only a specific member to query at
run time. While the list of members for a physical file can be obtained from the system catalog
SYSPARTITIONSTAT in the QSYS2 schema, the development tools in DB2 Web Query do not provide a
facility that gives the end user this kind of interface. But my in my experience with DB2 Web Query,
whenever | can’t do something with the tools, | often find | can accomplish what | want by writing my
own code and integrating it into DB2 Web Query using views and stored procedures. This is another
such case. Instead of basing my synonym on the SQL alias, | instead create one that references a stored
procedure. The procedure does the underlying “dirty work”: it accepts a member name as an input
parameter, dynamically creates an alias (in QTEMP) that references the passed in member name,
declares a cursor that (when opened) will return all the rows and columns in the alias, and finally, opens
the cursor to return the result to DB2 Web Query.

| can also create an SQL view over that SYSPARTITIONSTAT catalog to return the list of members for my
physical file. Once a synonym has been created over this view, it can be used as the data source to

populate my report’s auto prompt drop-down list. To illustrate this process, let’s work through an
example.

An example

In the following example, | take you through all the steps required for creating a DB2 Web Query report
that prompts the end user for the desired member to query, executes the query, and returns the results
to the browser. Oh, and this query uses SQE too. An example of this report is shown in Figure 1.

PAGE 1

Parameters
2007/01/01 $928.890.00 $1.286.720.00

':R";:;zr;::bj“ 2007/01/02 56.869,870.00 5$9.464,009.00

o 2007/01/08 $816,06000 51,214 65500

ORDERS2008 2007/01/09 $382.540.00 $556,082.00

I S 2007/01/12 $749,130.00 $1.113,978.00
2007/01/14 $3.539.060.00 $4.956,369.00
2007/01/16 $1,061.370.00 $1.256.230.00

[Run [Reset | [clear output | [] Run in a new window 2007/01/22 §245229500 $3493,001.00
2007/01/23 $16,725.00 $22.831.00
2007/01/26 $285.350.00 $477.096.00
2007/01/28 $1687.720.00 $2,036.753.00
2007/01/30 $4,957.490.00 $6,623,139.00
2007/01/31 $618,620.00 $906,416.00
2007/02/01 $2.115.00 $3,224.00
2007/02/03 $3.895.660.00 $5502,349.00
2007/02/06 $5.500.00 $7,968.00
2007/02/08 $2.460.00 $3,675.00
2007/02/09 51,308.930.00 $1.931,392.00
2007/02/11 $5,375.00 $7.321.00
2007/02/12 $224.020.00 $429.825.00
2007/02/13 57.992.430.00 $10.775.275.00
2007/02/14 $6.805.325.00 $8,986.249.00
2007/02/15 $42,380.00 $64,350.00
2007/02/16 $832,360.00 $1.035.442.00

Figure 1

1. First, open an SQL interface (such as Run SQL Scripts from System i Navigator) and create an SQL
stored procedure that accepts a member name as an input parameter. This procedure will
create an SQL alias that points to the member value passed in. It then returns all rows and
columns in the alias (because it opens a cursor based on the SELECT * FROM ORDERS_MBR
statement). An example is shown below.

CREATE PROCEDURE DYNAMIC_ORDERS_MEMBER

(IN MEMBERNAME CHAR(10))
DYNAMIC RESULT SETS 1
LANGUAGE sQL

MODIFIES SQL DATA
BEGIN
DECLARE CREATE_ALIAS VARCHAR (200) ;
DECLARE C1 CURSOR WITH RETURN TO CALLER FOR
SELECT *
FROM QTEMP / ORDERS_MBR ;

--Take the inputted member name and create an SQL alias
SET CREATE_ALIAS = 'CREATE ALIAS QTEMP/ORDERS_MBR FOR QGPL/ORDERS (' | | MEMBERNAME || ')';
EXECUTE IMMEDIATE CREATE_ALIAS ;
OPENC1;
END ;

2. To test the stored procedure, call it from the SQL interface and make sure it returns the

appropriate data.
CALL QGPL/DYNAMIC_ORDERS_MEMBER ('ORDERS2008');

3. Create a DB2 Web Query synonym over the stored procedure as shown in Figure 2.

T Marsion
Mew Adapter
2
& Adpiers Select Synonym Candidates for DB2 cli (*LOCAL) Step 1
=D DB2 di
2 *LOCAL
& DB Heritage Files “Restrict object type to |Stored Procedures =
2 Query/400 xternal SQI Scrip
=2 MS SQL Server 2005 X @lStored Procedures |,
= SQLServer2005 Further restrict search it es, Views and Ob._ar Objects
OTables
O Views
DAliases
OMQTs
& Library |COBBG Supply value to avoid system-wide search, sample: 5999
Object
=)
@name Sample: abc%
| Next>
Figure 2

4. Click the Next button to display the Step 2 screen. From here, find and select the stored
procedure from the presented list. An example is shown in Figure 3.

Figure 3

5. Click the Next button to display the Step 3 screen.

As shown in Figure 4, specify a valid (member name) value for the input parameter. This is
because DB2 Web Query actually runs the stored procedure during this step so that it can
generate a sample result set necessary for generating the format (columns) of the synonym.

It is also recommended that you supply a suffix of “_SP” to indicate that this is a stored
procedure data source. This is not required, but may be useful for your report developers. This
will tell them what kind of data source that the synonym is based on.

Create Synonym for DB2 cli (*LOCAL) Step 3 of 3

A suffiz is recommended but not
required. It lets you know that the data

owner |CDBBG source is a stored procedure
Procedure Name |DYNAMIC_ORDERS_MEMBER
Synonym name DYNAMIC_ORDERS_ l

Select application baseapp =l Prefix COBBG_ @fﬁx _SP)
OOverwrite existing synonyms

Create Synonym |

@ [Customize data type mappings

L] Name Value Data Type Col Type Description

MEMBERNAME ORDERS2005 Q CHAR IN

TN

Specify a valid member name here.

Figure 4
6. Click the Create Synonym button to finish this task and close the browser window.

7. Return to your SQL interface and create an SQL view that returns all the member names for the
multi-member file using the system catalog QSYS2/SYSPARTITIONSTAT. This view will be used to
populate the drop down list so the user can select which member to query at run time.

CREATE VIEW QGPL/SELECT_QAPMDISK_MEMBER AS

SELECT TABLE_PARTITION FROM

QSYS2/SYSPARTITIONSTAT WHERE TABLE_SCHEMA ="'QGPL' AND
TABLE_NAME = 'ORDERS'

8. Create a DB2 Web Query synonym over this new SQL view. An example is provided in Figure 5.

AVFDTA

' SELECT_ORDERS_M SEe e
- SNAPSHOT1 |
J SNAPSHOT2 —i—, F

Figure 5

9. Now you are ready to create your report. Open Report Assistant and select the new stored
procedure synonym as shown in Figure 6.

COBBG_INVENTORY
COBBG_TEM_FACT

COBBG_QDERSZ0072008
COBBG_ORDERS

Figure 6

10. Recall that we want to dynamically prompt the users for the member name by allowing them to
select from a list of members in a drop down list. To set this up, go to the Selection Criteria tab,
drag MEMBERNAME from list of Available fields to Screening conditions, and click the <Select

Figure 7

values> link. See Figure 7.

save | -

Run » |~| Help 2 |~| Quit x |

Reporting from file;: COBBG_DYNAMIC_OR...

Field =election

Report headings

:5 Available fields:

-5

4

oin options

Report options

 Screening conditiens
> Delete checked items:

s

7 [] (

N

STORE_CODE STORE_CODE AS
WARRNTYEXP WARRNTYEXP P22.2

Name ¢ |Alias | Format | S
tm LNEFRICE ~ LINEFRICE ~ P222 A
tm LNE_COBS LINE_COGS P222 A
(= WEMBERNAME PODO1 A0 I
‘= ORDER_DATE ORDER_DATE YYMD A
‘= ORDER_NUM ORDER_NUM A5 A
‘e PLANT_CODE PLANT CODE A3 A
‘= PROD_NUM PROD_NUM A& A
tm QUANTITY QUANTTY [A
‘e RETURNS ~ RETURNS I A
‘e SALEREFID SALEREPD [A
‘= SHIFCOST ~ SHPCOST P222 A

A

A

Displaying fields: 1-13, of 13

&y Show - Field list searching

™

‘|

MEMBERNAME

EQUAL to

w t<Selec1 '.falue5.>)

™

@ To learn more about any item on this page, just click the '?' to the left, and then click on the item you are interested in.

11. As shown in Figure 8, select Parameter and click on Auto Prompt icon

. IAutoPrompt

Figure 8

12. From the Data Source drop down list, select the synonym of the SQL view created in step 8 and
select the Field TABLE_PARTITION. This will populate the drop down list with all the member
names for the ORDERS file. Figure 9 shows an example of this.

cospo SeECT OmERs MEWBER) L]

TABLE_PARTITION __

Figure 9

13. Click OK twice.
14. Finish you report definition by specifying Field selection, Report headings, and Report options.
15. Save your report

16. Run your report. As shown in Figure 10, a drop down list is presented to prompt you for the
member to query.

lrun|[Reset || clear output

Figure 100

17. Click the Run button. The results are shown in Figure 11.

Parameters

Name of member:
ORDERS2006 | »

Run [Reset l [Clear Qutput]

] Runin a new window

PAGE 1

2006/01/01 $890,020.00 $1,165,669.00
2006/01/02 $6,718,220.00 $9,035,980.00
2006/01/08 $484.410.00 5685,441.00
2006/01/09 $235,730.00 $430,496.00
2008/01/12 $1,142.820.00 $1.530.265.00
2006/01/14 $2,725,640.00 $3,951,909.00
2006/01/16 $643.475.00 $812,758.00
2006/01/22 $4,065,800.00 $5,752.289.00
2006/01/23 $13.105.00 $18.271.00
2006/01/26 $506,450.00 $673,699.00

Figure 111

Note: If you did not want a drop down list for the member names, you would simply specify a
parameter name in step 12 and skips step 7,8 and 12 . This would present a text box from which
you could type in the member name.

What about joins?

In the above example, all of the columns in my report definition were taken from the single physical file
member (or segment). These columns were actually returned from the result set of the stored
procedure that was called during report execution. For many reports, you may need to join to other
related files in order to get all of the fields needed to satisfy the report requirements. To do this, you
could certainly use the Join Options tab in Report Assistant to join the stored procedure segment to
another file (thereby creating a second segment). The problem with this approach will be report
performance. Because the data retrieval for the first join segment is buried in (and performed by) the
stored procedure, there is no way for DB2 Web Query to generate a single SQL statement to perform
the join. This means that the merging of the two join segments must be performed by the DB2 Web
Query Reporting Server. While the performance of this may not be bad for smaller files, you are going to
experience a longer response time for larger data sets.

In these situations, | strongly recommend that you specify all of the join syntax in the stored procedure
itself. This will result in a single SQL statement being submitted to the DB2 engine. An example of the
modified DECLARE CURSOR statement (from the stored procedure) is shown below.

DECLARE C1 CURSOR WITH RETURN TO CALLER FOR SELECT A.*, B.*, C.*, D.*

FROM QTEMP/ORDERS_MBR A

INNER JOIN QWQCENT/STORES B ON A.STORE_CODE = B.STORECODE

INNER JOIN QWQCENT/PLANT C ON A.PLANT_CODE = C.PLANTCODE
INNER JOIN QWQCENT/INVENTORY D ON A.PROD_NUM = D.PRODUCTNUMBER;

Specifying the join in the stored procedure has several desirable effects. Here are a couple of them:

1. The report developer does not need to intimate with the data model and know what files to join
and what the correct join columns are.

2. The workload of processing the join logic will be pushed down to the database engine and will
result in a faster running report.

An example report that is based on columns from multiple join segments (returned from a stored
procedure) is shown in Figure 12.

PAGE 1
Parameters
Canada Eastemn Canada $54,299,505.00 $75,305,696.00
Name of member: Western Canada 510,252 380.00 $14.351.404.00
ORDERS2006 | v France lle de France 54,855,585 00 $6,928,609.00
e Nord-Pas-De-Calais $2,887.070.00 $4,192,061.00
CBROERE0GT > Pays de la Loire $6.169,020.00 $8,355.486.00
ORDERS2008 1 Provence - Alpes du Sud $9,247 680.00 $12,782,592.00
Germany Mard $4.375.200.00 $5.764,015.00
[] Runin a new window sl FERIT0 S ITEEEDI
Sud $6.218,040.00 $9.028.456.00
West $3,979.955.00 $5.604.492.00
Spain Andalucia $3.801,690.00 $5.588.403.00
Cataluna $17.103,340.00 $23.078,026.00
Pais Vasco $4.322 350.00 $6.087.149.00
United States East Morth Central $66,376,135.00 $90,761,750.00
East South Central $5.805.690.00 $8.384.523.00
Middle Atlantic §72,068,200.00 $100,635,670.00
Mountain $8.707.325.00 511.990,652.00
Mew England 539,165,295 00 553.678,576.00
Morth 511.108.410.00 515,432 014.00
Pacific $37.933,350.00 552.860,976.00
South Atlantic §75,322.400.00 $104,539,336.00
Web(R) 549,485 915.00 567,320,844 00
West Morth Central $5.976.415.00 58.373.442.00
West South Central 538,524 825 00 553.184,036.00

Figure 122

Membership need not be exclusive!

If your company has been running on the IBM i platform for awhile, chances are good that you have
some multi-member physical files in your database. It is a very useful and common implementation — in
fact almost every customer | talk to has them in their shop. As such, there are many that absolutely
need to pull valuable business data from this type of data source. Armed with this technique, you can
now use SQL and DB2 Web Query to extract this information, provide an interface that let’s your end
users access the data they need, AND enjoy all the benefits of SQE processing. Membership does have
its privileges!

