
TechTip: Members Only? No Problem

with DB2 Web Query

Use DB2 Web Query to access your multiple member files, let your users

dynamically select the member they want to query at run time, and

create a report that uses the latest and greatest database engine

technology
Published Friday, 12 March 2010 01:00 by MC Press On-line [Reprinted with permission from

iTechnology Manager, published by MC Press, LP; http://www.mcpressonline.com.]

Written by Gene Cobb – cobbg@us.ibm.com

Over the last several years, I have written several articles about DB2 for i and DB2 Web Query: some of

which emphasized the importance of employing techniques to ensure that your queries are using the

SQL Query Engine (SQE), the strategic database engine for DB2 for i. One of the requirements for SQE

processing is that the database access method must be SQL. However, one of the very few drawbacks

with SQL access on our beloved system is that it does not natively support the concept of physical file

members. This means you cannot write an SQL select statement that directly references a specific

member. When the file is queried, SQL can only access the first member in the file. This in turn means

that the DB2 Web Query CLI adapter (the one that generates SQL to satisfy the query request) can not

directly access a member either. If you have DB2 Web Query this can be frustrating because you may

have hundreds or even thousands of files that have valuable data tucked away in individual members.

Fortunately, all is not lost. DB2 Web Query does provide another adapter that lets you access specific

members: the DB Heritage File. You can use this adapter to configure a DB2 Web Query synonym that

references a specific physical file member. Any report that is based on such a synonym will generate a

database request using the OPNQRYF command (which does support the direct access of a physical file

member). Problem solved right?

Well yes and no. Yes, because this will work. You can create snazzy reports, graphs, and dashboards

using DB Heritage File synonyms to effectively reach the data in members. But remember what I said

about SQE? It will only be used to process a query if that query is based on an SQL statement. OPNQRYF

is not SQL, thus the older Classic Query Engine (CQE) must be used to perform the query workload.

While CQE is no slouch when it comes to handling database requests, in most cases, this means a slower

running query. It also means you can’t take advantage of all the “goodies” that SQE provides such as the

SQE plan cache, Maintained Temporary Indexes, and Materialized Query Tables. I could go on and on

about the benefits of SQE – but just know this: IBM has not enhanced CQE in a long time and will not be

in the future because SQE is the strategic engine.

OK, cheer up – I didn’t write this article to put you in a surly mood. Even though SQL does not support

the direct access of a specific member, there is a way to “trick” it into doing just that. Ever heard of an

SQL Alias? An alias is an alternate name for a table or view. If you were to look up the CREATE ALIAS

statement in the SQL reference manual, you would find this:

The CREATE ALIAS statement defines an alias on a table, partition of a table, view, or member of a

database file at the current server.

Wait -did you see that word? Member? Yes, you actually can create an SQL alias that points to a specific

physical file member. You can then reference the alias in an SQL Select statement to gain access to the

data in the specific member. To give you an example, let’s say you have a multi-member physical file

named ORDERS that resides in the QGPL library. ORDERS has several members – one for each year

between 2001 and the current year. To create an alias that points to a specific member you would

execute an SQL statement like the following:

 CREATE ALIAS QGPL/ORDERS_MBR FOR QGPL/ORDERS (ORDERS2005);

In this example, you created an SQL Alias named ORDERS_MBR that is based on the specific member

named ORDERS2005. This means any SQL statement that references that alias (like the one below) will

only query the data in the ORDERS2005 member.

SELECT * FROM QGPL/ORDERS_MBR

Since SQL is used for data access, SQE can be used to handle the request.

In DB2 Web Query you can also use the CLI adapter to create a synonym based on an SQL Alias. This

means you can create a DB2 Web Query report that is based on a specific member AND uses SQE!

Woohoo!

But wait, we’re not done yet. A question that I am often asked is how a DB2 Web Query report

developer can provide an interface that allows the end user to select only a specific member to query at

run time. While the list of members for a physical file can be obtained from the system catalog

SYSPARTITIONSTAT in the QSYS2 schema, the development tools in DB2 Web Query do not provide a

facility that gives the end user this kind of interface. But my in my experience with DB2 Web Query,

whenever I can’t do something with the tools, I often find I can accomplish what I want by writing my

own code and integrating it into DB2 Web Query using views and stored procedures. This is another

such case. Instead of basing my synonym on the SQL alias, I instead create one that references a stored

procedure. The procedure does the underlying “dirty work”: it accepts a member name as an input

parameter, dynamically creates an alias (in QTEMP) that references the passed in member name,

declares a cursor that (when opened) will return all the rows and columns in the alias, and finally, opens

the cursor to return the result to DB2 Web Query.

I can also create an SQL view over that SYSPARTITIONSTAT catalog to return the list of members for my

physical file. Once a synonym has been created over this view, it can be used as the data source to

populate my report’s auto prompt drop-down list. To illustrate this process, let’s work through an

example.

An example
In the following example, I take you through all the steps required for creating a DB2 Web Query report

that prompts the end user for the desired member to query, executes the query, and returns the results

to the browser. Oh, and this query uses SQE too. An example of this report is shown in Figure 1.

Figure 1

1. First, open an SQL interface (such as Run SQL Scripts from System i Navigator) and create an SQL

stored procedure that accepts a member name as an input parameter. This procedure will

create an SQL alias that points to the member value passed in. It then returns all rows and

columns in the alias (because it opens a cursor based on the SELECT * FROM ORDERS_MBR

statement). An example is shown below.

CREATE PROCEDURE DYNAMIC_ORDERS_MEMBER

 (IN MEMBERNAME CHAR(10))

 DYNAMIC RESULT SETS 1

 LANGUAGE SQL

 MODIFIES SQL DATA

BEGIN

DECLARE CREATE_ALIAS VARCHAR (200) ;

DECLARE C1 CURSOR WITH RETURN TO CALLER FOR

 SELECT *

 FROM QTEMP / ORDERS_MBR ;

--Take the inputted member name and create an SQL alias

SET CREATE_ALIAS = 'CREATE ALIAS QTEMP/ORDERS_MBR FOR QGPL/ORDERS (' || MEMBERNAME || ')' ;

EXECUTE IMMEDIATE CREATE_ALIAS ;

OPEN C1 ;

END ;

2. To test the stored procedure, call it from the SQL interface and make sure it returns the

appropriate data.

CALL QGPL/DYNAMIC_ORDERS_MEMBER ('ORDERS2008');

3. Create a DB2 Web Query synonym over the stored procedure as shown in Figure 2.

Figure 2

4. Click the Next button to display the Step 2 screen. From here, find and select the stored

procedure from the presented list. An example is shown in Figure 3.

Figure 3

5. Click the Next button to display the Step 3 screen.

As shown in Figure 4, specify a valid (member name) value for the input parameter. This is

because DB2 Web Query actually runs the stored procedure during this step so that it can

generate a sample result set necessary for generating the format (columns) of the synonym.

It is also recommended that you supply a suffix of “_SP” to indicate that this is a stored

procedure data source. This is not required, but may be useful for your report developers. This

will tell them what kind of data source that the synonym is based on.

Figure 4

6. Click the Create Synonym button to finish this task and close the browser window.

7. Return to your SQL interface and create an SQL view that returns all the member names for the

multi-member file using the system catalog QSYS2/SYSPARTITIONSTAT. This view will be used to

populate the drop down list so the user can select which member to query at run time.

CREATE VIEW QGPL/SELECT_QAPMDISK_MEMBER AS

SELECT TABLE_PARTITION FROM

QSYS2/SYSPARTITIONSTAT WHERE TABLE_SCHEMA = 'QGPL' AND

TABLE_NAME = 'ORDERS'

8. Create a DB2 Web Query synonym over this new SQL view. An example is provided in Figure 5.

Figure 5

9. Now you are ready to create your report. Open Report Assistant and select the new stored

procedure synonym as shown in Figure 6.

Figure 6

10. Recall that we want to dynamically prompt the users for the member name by allowing them to

select from a list of members in a drop down list. To set this up, go to the Selection Criteria tab,

drag MEMBERNAME from list of Available fields to Screening conditions, and click the <Select

values> link. See Figure 7.

Figure 7

11. As shown in Figure 8, select Parameter and click on Auto Prompt icon

Figure 8

12. From the Data Source drop down list, select the synonym of the SQL view created in step 8 and

select the Field TABLE_PARTITION. This will populate the drop down list with all the member

names for the ORDERS file. Figure 9 shows an example of this.

Figure 9

13. Click OK twice.

14. Finish you report definition by specifying Field selection, Report headings, and Report options.

15. Save your report

16. Run your report. As shown in Figure 10, a drop down list is presented to prompt you for the

member to query.

Figure 100

17. Click the Run button. The results are shown in Figure 11.

Figure 111

Note: If you did not want a drop down list for the member names, you would simply specify a

parameter name in step 12 and skips step 7,8 and 12 . This would present a text box from which

you could type in the member name.

What about joins?
In the above example, all of the columns in my report definition were taken from the single physical file

member (or segment). These columns were actually returned from the result set of the stored

procedure that was called during report execution. For many reports, you may need to join to other

related files in order to get all of the fields needed to satisfy the report requirements. To do this, you

could certainly use the Join Options tab in Report Assistant to join the stored procedure segment to

another file (thereby creating a second segment). The problem with this approach will be report

performance. Because the data retrieval for the first join segment is buried in (and performed by) the

stored procedure, there is no way for DB2 Web Query to generate a single SQL statement to perform

the join. This means that the merging of the two join segments must be performed by the DB2 Web

Query Reporting Server. While the performance of this may not be bad for smaller files, you are going to

experience a longer response time for larger data sets.

In these situations, I strongly recommend that you specify all of the join syntax in the stored procedure

itself. This will result in a single SQL statement being submitted to the DB2 engine. An example of the

modified DECLARE CURSOR statement (from the stored procedure) is shown below.

DECLARE C1 CURSOR WITH RETURN TO CALLER FOR SELECT A.*, B.*, C.*, D.*

FROM QTEMP/ORDERS_MBR A

INNER JOIN QWQCENT/STORES B ON A.STORE_CODE = B.STORECODE

INNER JOIN QWQCENT/PLANT C ON A.PLANT_CODE = C.PLANTCODE

INNER JOIN QWQCENT/INVENTORY D ON A.PROD_NUM = D.PRODUCTNUMBER;

Specifying the join in the stored procedure has several desirable effects. Here are a couple of them:

1. The report developer does not need to intimate with the data model and know what files to join

and what the correct join columns are.

2. The workload of processing the join logic will be pushed down to the database engine and will

result in a faster running report.

An example report that is based on columns from multiple join segments (returned from a stored

procedure) is shown in Figure 12.

Figure 122

Membership need not be exclusive!
If your company has been running on the IBM i platform for awhile, chances are good that you have

some multi-member physical files in your database. It is a very useful and common implementation – in

fact almost every customer I talk to has them in their shop. As such, there are many that absolutely

need to pull valuable business data from this type of data source. Armed with this technique, you can

now use SQL and DB2 Web Query to extract this information, provide an interface that let’s your end

users access the data they need, AND enjoy all the benefits of SQE processing. Membership does have

its privileges!

